Math 115
Winter 2017
Lecture 9

Class Quiz
(1) Find slope of a line that contains $(-4,1)$ and $(0,6) \quad m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{1-6}{-4-0}$

$$
=\frac{-5}{-4}=\frac{5}{4}
$$

(2) find eqn of a line that contains $(4,-3)$ with
slope $\frac{1}{2}$.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=\frac{1}{2}(x-4)
\end{gathered} \int \begin{aligned}
& y+3=\frac{1}{2} x-2 \\
& y=\frac{1}{2} x-5
\end{aligned}
$$

(3) Graph and shade : $y \geq \frac{-3}{4} x+3$

(1) find two cons. integers such that four times the larger one is equal to 5 times the smaller one.

$$
\begin{gathered}
4 \cdot \text { larger }=5 \cdot \text { Smaller }^{\text {m }} \\
4(x+1)=5 x \\
4 x+4=5 x \\
4=5 x-4 x \\
4=x
\end{gathered}
$$

(2) Find two cons. odd integers Such that 4 times the larger one is equal to the difference of 127 and 3 times the smaller one.

$$
\begin{aligned}
& 4 \cdot \text { larger }=127-3 \text { Smaller } \\
& \begin{aligned}
4(x+2) & =127-3 x \\
4 x+8 & =127-3 x \\
4 x+3 x & =127-8 \\
7 x & =119
\end{aligned} \quad \rightarrow x=\frac{119}{7}
\end{aligned}
$$

find two cons. even integers such that when 8 times the smaller reduced by 3 times the larger, the result is equal to 124. find the larger one.

$$
\begin{align*}
& 8 \cdot \text { Smaller }-3 \cdot \text { larger }=124 \\
& 8 \cdot x-3 \cdot(x+2)=124 \\
& 8 x-3 x-6=124 \\
& 5 x=130
\end{align*}
$$

$$
\varepsilon x+2
$$

Solve

$$
\begin{cases}x+3 y=7 & x+3(2-x)=7 \\ y=2-x & x+6-3 x=7 \\ y=2-\left(\frac{-1}{2}\right) & -2 x=1 \quad x=\frac{-1}{2} \\ & =2+\frac{1}{2} \quad y=\frac{5}{2}\end{cases}
$$

System is Consistent
Ecus are independent.

Solve

$$
2\left\{\begin{array} { l }
{ 3 x - 2 y = - 7 } \\
{ 4 x + 3 y = 1 9 }
\end{array} \Rightarrow \left\{\begin{array}{l}
9 x-6 y=-21 \\
8 x+6 y=38
\end{array}\right.\right.
$$

$$
4(1)+3 y=19
$$

$$
\begin{aligned}
& +3 y=11 \\
& 3 y=15 \rightarrow y=5 \quad(1,5)
\end{aligned}
$$

Graph the Solution

$$
\begin{aligned}
& \text { Graph The Solution } \\
& \left\{\begin{array}{lll}
x<2 \\
y<4 \\
y>\frac{-2}{3} x-1
\end{array}\right.
\end{aligned}
$$

Ch. 4
Exponential Rules
(1) $x^{n=\sigma \text { exponent (Power }}$
(1) $x_{\text {base }}^{n^{n^{\sigma}}} x^{n}=\underbrace{x \cdot x \cdot x \cdot x \cdots \cdot x}_{n \text { times }}$

$$
\begin{array}{ll}
5^{3}=5 \cdot 5 \cdot 5 & (-3 x)^{4}=(-3 x) \cdot(-3 x) \cdot(-3 x)(-3 x) \\
x^{7}=x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x & \left(\frac{5}{y^{2}}\right)^{2}=\frac{5}{y^{2}} \cdot \frac{5}{y^{2}}
\end{array}
$$

(2) $x^{1}=x$	(3) $x^{0}=1, x \neq 0$
$10^{1}=10$	$2^{0}=1$
$(-7)^{1}=-7$	$(-10)^{0}=1$
$\left(3 x^{2}\right)^{1}=3 x^{2}$	$\left(\frac{2}{3}\right)^{0}=1$
$\left(-5 x y^{2}\right)^{1}=-5 x y^{2}$	$\left(4 x^{2} y^{3}\right)^{0}=1$

(4)

$$
\begin{aligned}
& x^{m} \cdot x^{n}=x^{m+n} \\
& x^{2} \cdot x^{3}=x^{2+3}=x^{5} \\
& (2 x)^{6} \cdot(2 x)^{4}=(2 x)^{6+4}=(2 x)^{10} \\
& \left(-4 y^{3}\right)^{8} \cdot\left(-4 y^{3}\right)^{7} \cdot\left(-4 y^{3}\right)^{5}=\left(-4 y^{3}\right)^{8+7+5}=\left(-4 y^{3}\right)^{20} \\
& \left(\frac{3 x}{y^{5}}\right)^{2} \cdot\left(\frac{3 x}{y^{5}}\right)^{13}=\left(\frac{3 x}{y^{5}}\right)^{15}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& \left(x^{m}\right)^{n}=x^{m \cdot n} \\
& \left(x^{4}\right)^{2}=x^{4 \cdot 2}=x^{8} \\
& \left(y^{5}\right)^{3} \cdot y^{6}=y^{15} \cdot y^{6}=y^{15+6}=y^{21} \\
& \left(x^{6}\right)^{5} \cdot\left(x^{8)^{2}}=x^{30} \cdot x^{16}=x^{30+16}=x^{46}\right.
\end{aligned}
$$

(6)

$$
\begin{aligned}
& (x y)^{n}=x^{n} y^{n} \\
& (2 x)^{4}=2^{4} \cdot x^{4}=16 x^{4} \\
& \left(-3 x^{2}\right)^{5}=(-3)^{5} \cdot\left(x^{2}\right)^{5}=-243 x^{10} \\
& \left(4 x^{5} y^{3}\right)^{3}=4^{3}\left(x^{5}\right)^{3}\left(y^{3}\right)^{3}=64 x^{15} y^{9}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } \frac{x^{m}}{x^{n}}=x^{m-n} \\
& \frac{x^{7}}{x^{2}}=x^{7-2}=x^{5} \\
& \frac{x^{12} y^{18}}{x^{4} y^{17}}=x^{12-4} y^{18-17}=x^{8} y^{1}=x^{8} y \\
& \frac{\left(x^{6}\right)^{5}}{x^{12} \cdot x^{18}}=\frac{x^{6 \cdot 5}}{x^{12+18}}=\frac{x^{30}}{x^{30}}=x^{30-30}=x^{0}=1
\end{aligned}
$$

(8) $\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$

$$
\begin{array}{rlr}
\left(\frac{2}{3}\right)^{4}=\frac{2^{4}}{3^{4}}=\frac{16}{81} \\
\left(\frac{-5}{x^{2}}\right)^{3}=\frac{(-5)^{3}}{\left(x^{2}\right)^{3}}=\frac{-125}{x^{2 \cdot 3}} & =\frac{\left(x^{5}\right)^{4}\left(y^{4}\right)^{4}}{\left(z^{6}\right)^{4}} \\
& =\frac{-125}{x^{6}} & =\frac{x^{7 \cdot 4} y^{5 \cdot 4}}{z^{6 \cdot 4}} \\
& =\frac{x^{28} y^{20}}{z^{24}}
\end{array}
$$

(a)

$$
\begin{aligned}
& x^{-n}=\frac{1}{x^{n}} \\
& x^{-2}=\frac{1}{x^{2}} \\
& \left(x^{-3}\right)^{4}=x^{-12}=\frac{1}{x^{12}} \\
& \begin{aligned}
&\left(x^{5}\right)^{-6}=x^{-30}=\frac{1}{x^{30}}=x^{-2} \cdot\left(x^{10}\right)^{-2} \\
&=x^{(-2)(-8)} \cdot x^{10(-2)} \\
&=x^{16+(-20)}=x^{-4} \\
&=\frac{1}{x^{4}}
\end{aligned}
\end{aligned}
$$

(10)

$$
\begin{aligned}
& \text { (10) } \frac{x^{-n}}{y^{-m}}=\frac{y^{m}}{x^{n}} \\
& \frac{x^{-2}}{y^{-5}}=\frac{y^{5}}{x^{2}} \quad \frac{x^{7} y^{-4}}{x^{-3} y^{6}}=\frac{x^{7} x^{3}}{y^{6} y^{4}}=\frac{x^{10}}{y^{10}} \\
& \frac{\left(x^{5}\right)^{-4} \cdot\left(y^{-3}\right)^{5}}{x^{6} \cdot y^{-25}}=\frac{x^{-20} y^{-15}}{x^{6} \cdot y^{-25}}=\frac{y^{25}}{x^{6} x^{20} y^{15}} \\
& =\frac{y^{10}}{x^{26}}
\end{aligned}
$$

(11)

$$
\begin{aligned}
& \left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n} \\
& \left(\frac{2}{3}\right)^{-2}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4} \\
& \left(\frac{5}{x^{4}}\right)^{-3}=\left(\frac{x^{4}}{5}\right)^{3}=\frac{x^{12}}{5^{3}}=\frac{x^{12}}{125} \\
& \left(\frac{-2 x^{5}}{y^{6}}\right)^{-4}=\left(\frac{y^{6}}{-2 x^{5}}\right)^{4}=\frac{\left(y^{6}\right)^{4}}{(-2)^{4}\left(x^{5}\right)^{4}}=\frac{y^{24}}{16 x^{20}}
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& \left(\frac{x^{-3} y^{6}}{z^{-8}}\right)^{-5}=\left(\frac{z^{8} y^{6}}{x^{3}}\right)^{-5} \\
& \left(-8 x^{6}\right)\left(5 x^{3}\right)=\left(\frac{x^{3}}{z^{8} y^{6}}\right)^{5}=\frac{x^{15}}{z^{40} y^{30}} \\
& =-40 x^{9} \\
& \frac{-28 x^{12}}{4 x^{-3}}=-7 x^{12-(-3)} \\
& =x^{15}
\end{aligned}
$$

Distribute \& Simplify
1)

$$
\begin{aligned}
& 5\left(2 x^{2}-3 x+6\right)-3\left(3 x^{2}-5 x+10\right) \\
= & 10 x^{2}-15 x+30-9 x^{2}+15 x-30 \\
= & 1 x^{2}=x^{2}
\end{aligned}
$$

2)

$$
\begin{aligned}
& -3 x(5 x+7)+5\left(3 x^{2}+4 x-1\right)+x+5 \\
& =-15 x^{2}-21 x+15 x^{2}+20 x-x+x+5 \\
& =0
\end{aligned}
$$

\rightarrow outside ones
first ones

$$
\begin{aligned}
&(x+3)(x+7)= x^{2}+7 x+3 x+21 \\
&=x^{2}+10 x+21 \\
&(2 x-3) x+5) \\
&=2 x^{2}+10 x-3 x-15=2 x^{2}+7 x-15
\end{aligned}
$$

Use FOIL to multiply:
(1)

$$
\begin{aligned}
(4 x-5)(3 x-7) & =12 x^{2}-28 x-15 x+35 \\
& =12 x^{2}-43 x+35
\end{aligned}
$$

(2)

$$
\begin{aligned}
& =4 x^{2}-18 x+18 x-81 \quad=4 x^{2}-81
\end{aligned}
$$

find an expression in simplest form for p ह, A

$$
\begin{aligned}
& P=2 L+2 W \\
& A=L W
\end{aligned}
$$

$A=L W$

$$
\begin{aligned}
& =(5 x+7)(5 x-7) \\
& =25 x^{2}-35 x+35 x-49 \\
& =25 x^{2}-49
\end{aligned}
$$

$$
=10 x+14+10 x-14
$$

Use foil to multiply

$$
\begin{aligned}
& 3 x-2)\left(9 x^{2}+6 x+4\right) \\
& =27 x^{3}+18 x^{2}+ \pm 2 x=+8 x^{2}-2 x-8 \\
& =27 x^{3}-8
\end{aligned}
$$

Maria has $\$ 1.15$ in nickels $\dot{\varepsilon}$ Dimes only. \# of dimes is 1 more than 3 times $\#$ of nickels. use system of linear eqns to find how many of

$$
\begin{aligned}
& \text { each. } \\
& N \rightarrow \text { Nickels } \\
& D \rightarrow \# \text { Dimes }
\end{aligned}\left\{\begin{array}{l}
5 N+10 D=115 \\
D=3 N+1 \text { use Subs. } \\
\text { method }
\end{array}\right.
$$

$$
\begin{gathered}
5 N+10(3 N+1)=115 \\
5 N+30 N+10=115 \\
35 N=105 \\
N=3
\end{gathered}
$$

Jose has $\$ 230$ in $\$ 10 ' s$ غ $\$ 20$'s only. He has a total of 15 bills.
How many of each?

$$
\begin{aligned}
& 8 \text { of } \$ 20 \text { bills } \\
& -1\left\{\begin{array}{l}
x+y=15 \\
x+2 y=23
\end{array}\right.
\end{aligned}
$$

The number of kids was 3 more than 4 times the number of adults in a trip to local Zoo.

$$
\begin{aligned}
& \text { Kid's }+k t \rightarrow \$ 3 \\
& \text { Adult's }+k+\rightarrow \$ 8 \\
& \text { Total cost } \rightarrow \$ 109
\end{aligned} \quad\left\{\begin{array}{l}
k=4 A+3 \\
3 K+8 A=109
\end{array}\right.
$$

How many of each?
Subs. method

$$
\begin{gathered}
3(4 A+3)+8 A=109 \\
12 A+9+8 A=109 \\
20 A=100 \\
A=5
\end{gathered}
$$

Jack needs 100 pounds of candy @ \$2.15 Per pound.
He has unlimited supply of two types of candy, one @ $\$ 1.85 / 1 b$ غ the other one @ $\$ 2.25 / \mathrm{lb}$. How many of each should he mix to obtain what he needs?

$$
\frac{[\$ 1.85]}{x}+\left[\frac{\$ 2.25}{y}=\frac{|\$ 2.15|}{100}\right.
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+y=100 \\
1.85 x+2.25 y=2.15(100)
\end{array}\right. \\
& -37(x+y=100 \\
& (37 x+45 y=4300 \\
& \left\{\begin{array}{l}
-37 x-37 y=-3700 \\
37 x+45 y=4300
\end{array}\right. \\
& 8 y=600 \\
& y=75 \\
& \left\{\begin{array}{l}
x+y=100 \\
185 x+225 y=21500
\end{array}\right. \\
& \text { Divisible by } 5 \\
& \text { } 75 \mathrm{lb} \text {. of candy@ } \\
& \$ 2.25 / \mathrm{lb} \text {. غ̀ }
\end{aligned}
$$

Lisa works in a chem. lab.
She needs 20 liters of 18%, alcohol Soln. She has unlimited supply of $12 \%, 20 \%$ alcohol Solutions.

Give ans in words.

$$
\begin{gathered}
\left.\frac{\mid 12 \%}{x}+\frac{\mid 20 \%}{y}=\frac{\mid 8 \%}{20} \right\rvert\, \\
\left\{\begin{array}{l}
x+y=20 \\
100 \\
\frac{12}{100} x+\frac{20}{100} y=\frac{18}{100} .20
\end{array}\left\{\begin{array}{l}
x+y=20 \\
12 x+20 y=18(20) \\
\div 4
\end{array}\right\} \begin{array}{l}
x+y=20 \\
3 x+5 y=90 \\
y=5 \\
y=15
\end{array}\right.
\end{gathered}
$$

John need 100 liters of 82% acid Soln. He has 40% acid solution and a pure acid Solution.
How many liters of $\underset{x}{40 \%}+\underset{y}{400 \%}=82 \%$ each?

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+y=100 \\
100\left\{\begin{array} { l }
{ \frac { 4 0 } { 1 0 0 } x + \frac { 1 0 0 } { 1 0 0 } y = \frac { 8 2 } { 1 0 0 } \cdot 1 0 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x+y=100 \\
40 x+100 y=8200
\end{array}\right.\right. \\
-2\left\{\begin{array}{l}
x+y=100 \\
2 x+5 y=410 \Rightarrow 3 y=210 \\
y=70
\end{array} \quad \begin{array}{l}
\text { Divisible by } 20 \\
\text { of pure } \\
30 L \text { of } 40 \%
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

Joe has 18 L of 20% alcohol Solution. How many liters of 40% alcohol solution Should he mix to obtain a new Solution @ 31\% alcohol. Use one variable only.

$$
\begin{aligned}
& {\left[\frac{20 \%}{18}+\frac{40 \%}{x}=\frac{31 \%}{18+x}+\begin{array}{r}
2360+40 x=598+ \\
31 x \\
40 x-31 x=558-360 \\
9 x=198 \\
\frac{20}{100} \cdot 18+\frac{40}{100} \cdot x=\frac{31}{100} \cdot(18+x) \\
L C D=100+40 x=31(18+x) \\
360+402
\end{array}\right.}
\end{aligned}
$$

Due Thursday: whatever was due today work on WP 8,9 , and 10 Expect 2 Quizzes tomorrow. Parallel \& Perpendicular lines system of linear egns.

